
CDI-pio, CDI with parallel I/O

Deike Kleberg, Uwe Schulzweida, Thomas Jahns and Luis Kornblueh
Max-Planck-Institute for Meteorology and Deutsches Klima Rechenzentrum

Project ScalES funded by BMBF

November 14, 2011

Contents

1 Introduction 2

2 I/O stages in the program flow 3
2.1 Define CDI resources: STAGE DEFINITION . 3
2.2 Writing in parallel: STAGE TIMELOOP . 3
2.3 Cleanup CDI resources: STAGE CLEANUP . 4
2.4 The namespace object . 4

3 Modes of low level writing 4
3.1 PIO NONE: 1 process collects and writes using POSIX IO 5
3.2 PIO MPI: n processes collect and write using MPI IO 6
3.3 PIO WRITER: n− 1 processes collect and 1 writes using POSIX IO 6
3.4 PIO ASYNCH: n− 1 processes collect and 1 writes using POSIX AIO 7
3.5 PIO FPGUARD: n− 1 processes collect and write using POSIX IO 7

4 CDI-pio modules 8
4.1 Initialize parallel I/O: pioInit . 8
4.2 Finalize parallel I/O: pioFinalize . 9
4.3 Notify the end of the definition stage: pioEndDef 9
4.4 Notify the end of the timestepping stage: pioEndTimestepping 10
4.5 Move data to the collecting I/O server: pioWriteTimestep 10
4.6 Switch between namespaces: pioNamespaceSetActive 11
4.7 Offset of the local I/O subvariable: pioInqVarDecoOff 12
4.8 Chunk of the local I/O subvariable: pioInqVarDecoChunk 12

5 Internal concepts 12
5.1 MPI communicators . 13
5.2 Timestepping . 13

1

List of Figures

1.1 CDI streamWriteVar . 2

3.1 Legend and pseudo code encodeNBuffer . 5
3.2 PIO NONE and PIO MPI . 6
3.3 PIO WRITER . 6
3.4 PIO FPGUARD . 7

5.1 Participation of MPI processes in communication “universes”. 13
5.2 Pseudo code pioBuffer used in figure timestep tsID 13
5.3 Timestep tsID on model and I/O collector processes. 14

1 Introduction

The scalability of Earth System Models (ESMs) is the leading target of the ScalES project,
in particular with regard to future computer development. Our work focuses on overcoming
the I/O bottleneck. The Climate Data Interface (CDI) is a sophisticated data handling li-
brary of the Max-Planck-Institute for Meteorology with broad acceptence in the community.

streamWriteVar(streamID,varID,data,n)

cdilib

count = compress (buf, data)

encode (streamID, data, tsID, n)

fwrite(buf,1,count,fp)

Pe
root

Figure 1.1: CDI streamWriteVar

Its I/O is carried out synchronously relative to the model
calculation. We have decided to parallelize the file writ-
ing with the CDI, because of the great benefit for many
ESMs.

We analyzed some HPC systems concerning the impact
of their architecture, filesystem and MPI implementa-
tion on their I/O performance and scalability. The in-
vestigation delivered a large spectrum of results. As a
consequence, we introduce different modes of low level
file writing. The tasks of the I/O processes, which are
now decoupled from the model calculation, are split. We
destinguish into collecting the data, encode, compress
and buffer it on one side and writing the data to file on the other. The extension of the CDI with
parallel writing (CDI-pio) provides five different I/O modes making use of this role allocation.
The modulation of I/O mode, numbers and location of processes with the best performance on a
special machine can be determined in test runs.

On some systems it is impossible to write from different physical nodes to one file. Taking the
architectural structures into consideration we made a key pillar for the design of CDI-pio from
the distribution of I/O processes and files on physical nodes. If the I/O processes are located
on different physical nodes, the MPI communicator for the group of I/O processes is split and
each subgroup gets a loadbalanced subset of the files to write. On some machines this approach
increases the throughput remarkably.

2

http://www.dkrz.de/Klimaforschung/dkrz-und-klimaforschung/infraproj/scales
https://code.zmaw.de/projects/cdi

The application programming interface of the CDI is kept untouched, we introduce only a few
indispensable functions and encapsulate the other developments inside the library. The mod-
els have to eliminate the special position of the root process with respect to file writing. All
model processes “write” their chunk of the decomposed data and save the time former needed for
gathering and low level writing.

2 I/O stages in the program flow

With the concept of I/O stages in the model program flow CDI-pio meets two of the main re-
quirements for asynchronous I/O with the CDI: The consistency of the resources on MPI processes
in different groups and the minimization of the communication. The program flow is divided in
three stages:
STAGE DEFINITION The CDI resources have to be defined.
STAGE TIMELOOP Data can be moved from the model to the collecting I/O server.
STAGE CLEANUP The CDI resources can be cleaned up.

A listing of an example program built up of control (4.1) and model run (4.5) in chapter CDI-pio
modules clearifies the program flow.

2.1 Define CDI resources: STAGE DEFINITION

STAGE DEFINITION is the default stage and starts with a call to pioInit. During this stage, the
CDI resources have to be defined. Trying to write data with CDI streamWriteVar will lead to
an error and abort the program. The stage is left by a call to pioEndDef. After leaving, any call
to a CDI subprogramm XXXdefYYY will lead to an error and abort the program.

2.2 Writing in parallel: STAGE TIMELOOP

STAGE TIMELOOP starts with a call to pioEndDef. Invocations to CDI streamClose,
streamOpenWrite, streamDefVlist and streamWriteVar effect the local CDI resources but not
the local file system. The calls are encoded and copied to a MPI window buffer. You can find
a flowchart of one timestep in figure 5.3. streamClose, streamOpenWrite and streamDefVlist
have to be called

• only for an already defined stream/vlist combination,

• in the suggested order,

• at most once for each stream during one timestep and

• before any call to streamWriteVar in that timestep.

All four CDI stream calls require that the model root process participates. Disregards to this
rules will lead to an error and abort the program. The implication also holds for attempts to
define, change or delete CDI resources during STAGE TIMELOOP. Therefor it is necessary to switch
stages before cleaning up the resources. A call to pioEndTimestepping closes STAGE TIMELOOP.

3

2.3 Cleanup CDI resources: STAGE CLEANUP

STAGE CLEANUP is launched by invoking pioEndTimestepping. In this stage, the CDI resources
can be cleaned up. Trying to write data with CDI streamWriteVar will now lead to an error and
abort the program.

2.4 The namespace object

For some models the concept of stages is to narrow. In order to meet this requirement we introduce
namespaces. A namespace

• has an identifier,

• is mapped to a CDI resource array,

• indicates, if the model processes write locally or remote,

• has an I/O stage and

• is the active namespace or not.

A call to pioInit initializes the namespace objects with two of the arguments given by the model
processes, the number of namespaces to be used and an array indicating if they obtain local or re-
mote I/O. Invoking pioNamespaceSetActive switches the namespace so that subsequent CDI calls
operate on the resource array mapped to the chosen namespace. The namespaces are destroyed
by pioFinalize. If the model uses the CDI serially, exactly one namespace supporting local writing
is a matter of course. To save overhead, it is preferable to work with one namespace.

3 Modes of low level writing

The I/O performance and scalability of a supercomputer depends on the combination of the
hardware architecture, the filesystem and the MPI implementation. We made testruns on several
machines invoking MPI File iwrite shared, the obvious way of parallel file writing. Especially
on the IBM Blizzard, as a matter of course in our primary focus, the benchmark programs achieved
surprisingly poor results. Accordingly the CDI has to provide possibilities to write files in parallel
using POSIX IO. The tasks formerly carried out by the root process are split into the subtask
gather, encode and compress on one side and write the files on the other. The variable partition
of these subtasks in the group of I/O server led us to five modes of low level writing. CDI-
pio is backwards compatible due to the differentiated behavior of the CDI calls streamClose,
streamOpenWrite, streamDefVlist and streamWriteVar on model side, depending on local
writing and I/O stage. The original stream functions were written for low level file writing,
naturally also the collecting I/O processes invoke them. This makes the I/O modes to another
key to the program flow of the CDI stream calls.

4

Helvetica

Courier

CDI pseudo code

CDI on special I/O process

CDI on I/O collector process

CDI on model process

model code

source code

pseudo code

synchronization of processes

step into code (to inside)

step into code (from outside)

(a) Legend

encodeNBuffer (streamID, data, tsID)
encodeNBuffer (data, id, tid)

newTimestep (tsID)

compress (data)

gribEncode (data)

bufPush (data, streamID)
MPI_Barrier(comm)

tsID
==

?

yes

no

currentTsID

pioWrite (streamID)

newTimestep (tsID)

(b) Pseudo code encodeNBuffer

Figure 3.1: Legend and pseudo code encodeNBuffer

On the I/O processes the excecution of the subprogram streamWriteVar is controlled by the
I/O modes. To clearify the functioning we use pseudo code and flowcharts as you can see in
figure 3.1. The command encodeNBuffer abstracts the encoding, compressing and buffering of
the data for a variable. The data in a GRIB file may not be mixed by time, so we need a command
newTimestep to manage the flushing of the output buffers on the I/O server side. To achieve this,
a MPI Barrier is used.

I/O modes provided by CDI-pio:

PIO NONE one process collects, encodes, compresses, buffers and writes using C
fwrite.

PIO MPI all processes collect, gather, encode, compress, buffer and write using
MPI File iwrite shared.

PIO ASYNCH one process writes the files using low level POSIX AIO, the others collect,
gather, encode, compress and buffer.

PIO FPGUARD one process guards the fileoffsets, all others collect, gather, encode, com-
press and write using C fwrite.

PIO WRITER one process writes the files using C fwrite, the others collect, gather,
encode, compress and buffer.

3.1 PIO NONE: 1 process collects and writes using POSIX IO

The I/O mode PIO NONE can only be run with one I/O process per physical node. This process
collects, encodes, compresses, buffers and writes the data to the files attributed to his node. For
low level file writing the C standard fwrite is used. The advantages in comparison with the
former serial writing are that the writing is done asynchronous with respect to the calculation
and that the data is buffered. In addition it can be executed in parallel spread over physical
nodes.

5

Pe io

streamWriteVar(streamID,varID,data,n)

cdilib

encodeNBuffer (streamID, data, tsID)

fwrite(buf,1,count,fp)

yes

bufIsFilled (streamID)
no

bufSwitch ()

pioWrite (streamID)

(a) PIO NONE

Pe io

yes

encodeNBuffer (streamID, data, tsID)

bufIsFilled (streamID)

cdilib

MPI_File_iwrite_shared(fh,buf,count,datatype,request)

bufSwitch ()

no

streamWriteVar(streamID,varID,data,n)

pioWrite (streamID)

(b) PIO MPI

Figure 3.2: PIO NONE and PIO MPI

3.2 PIO MPI: n processes collect and write using MPI IO

Data access using MPI is the straight forward way to parallel file manipulation. With
MPI File iwrite shared the processes have a shared file pointer available. The function is non-
blocking and split collective. Like PIO NONE the I/O mode PIO MPI has no division of task within
the I/O group, all processes collect, encode, compress, buffer and write to file. Writing in this
I/O mode strongly depends on the MPI implementation, the buffers used internally are of major
importance for the performance of writing.

3.3 PIO WRITER: n− 1 processes collect and 1 writes using POSIX IO

cdilib

MPI_RECV(buf,count,datatype,source,tag,comm,status)

 MPI_PROBE(source,tag,comm,status)

bufSwitch (streamID)

encodeNBuffer (streamID, data, tsID)

MPI_ISEND(buf,count,datatype,dest,tag,comm,request)

spec
Pe

switch (status.TAG)

WRITE_BUFFERcase

fwrite(buf,1,count,fp)

yes

bufIsFilled (streamID)

cdilib

no

Pe
coll

streamWriteVar(streamID,varID,data,n)

pioWrite (streamID)

Figure 3.3: PIO WRITER

If the I/O mode PIO WRITER is chosen, the subtasks of writing are split between the I/O processes.
Just one process per physical node does the low level writing while the others collect, encode,
compress and buffer the data. The writer is the process with the highest rank within the I/O

6

group on one physical node. Originating from pioInit he invokes a backend server function,
which he does not leave until he received messages from all collecting I/O processes to finalize. A
collector gets data from the calculating model processes via MPI RMA communication, and, after
encoding and compressing it, pushes it to a double buffer. If the buffer is filled, the contained
data is send via MPI Isend to the writer, the collector switches to the other buffer and continues
his job. Before sending the data he has to wait for a potentially outstanding MPI Request. This
might happen if the writer or the buffers used by MPI are overcommited and indicates that the
ratio of collectors and writers has to be checked. The writer is polling using MPI Probe to look
for incoming messages from the collectors. One message per collecting process is tagged with the
finalize command. All other messages contain a stream identifier, a buffer with data to be written
and a file manipulation instruction. There are three kinds of this commands: 1. open a file and
write the data to it, 2. write the data to an open file and 3. write the data to an open file and
close it afterwards. For the file writing C standard fwrite is used.

3.4 PIO ASYNCH: n− 1 processes collect and 1 writes using POSIX AIO

The I/O mode PIO ASYNCH is similar to PIO WRITER, it only differs in the method used for low
level file writing. The asynchronous nonblocking I/O can be overlapped with processing, write
orders are passed to the operating system.

3.5 PIO FPGUARD: n− 1 processes collect and write using POSIX IO

cdilib

no
bufIsFilled (streamID)

yes

encodeNBuffer (streamID, data, tsID)

fseek(fp,offset,SEEK_SET)

recvcount,recvtype,msource,recvtag,comm,status)

 MPI_SENDRECV(amount,sendcount,sendtype,dest,sendtag,offset,

fwrite(buf,1,amount,fp)

Pe
spec

Pe
coll

streamWriteVar(streamID,varID,data,n)

cdilib

 MPI_PROBE(source,tag,comm,status)

switch (status.TAG)

case UPDATE_OFFSET

update (streamID, amount)

recvcount,recvtype,msource,recvtag,comm,status)

 MPI_SENDRECV(offset,sendcount,sendtype,dest,sendtag,amount,

pioWrite (streamID)

Figure 3.4: PIO FPGUARD

Writing a huge amount of data with a fixed file offset is a very fast way of file writing. In this I/O
mode one I/O process per physical node is spent to administrate the file offsets while the others
do all the subtasks former defined for the parallel I/O. The functionality of this collaboration
is similar to PIO WRITER. Originating from pioInit the process with the highest rank calls a
backend server function in which it is busy waiting for messages. The collecting I/O processes get
data from the calculating model processes via MPI RMA communication. The data is encoded,
compressed and buffered. If the buffer is filled, the collector sends the count of the contained data
to the “file pointer guard” and gets a file offset back. With the received offset the collector writes
the data to file using C standard fwrite and goes on with his job. One message per collecting

7

process is tagged with the finalize command. All other messages needed for the communication
between the “file pointer guard” and the collectors contain a stream identifier, a numeric value
holding the amount of buffered data respectively the file offset and a command. There are three
kinds of commands: 1. offset wanted for a file that will be newly opened, 2. offset wanted for an
open file and 3. offset wanted for a file that will be closed after writing.

4 CDI-pio modules

4.1 Initialize parallel I/O: pioInit

The function pioInit initializes the parallel I/O with CDI, it launches the STAGE DEFINITION.
pioInit defines a control object for the MPI communicators (see figure 5.1) and triggers their
initialization. After starting the I/O server, pioInit receives a message from each I/O process,
containing information about its location on a physical node and its function as a collector of data
or a backend server. The first information is stored in the control object, the latter is used to
construct the communicators for the data transfer. Furthermore, pioInit defines and initializes
an control object for the namespaces. The call pioInit is collective for all MPI processes using
the CDI. If the model employs the CDI serially, a call to pioInit has no effect.

Usage

INTEGER FUNCTION pioInit (INTEGER commGlob, INTEGER nProcsIO,
INTEGER IOMode, INTEGER nNamespaces,
INTEGER hasLocalFile (nNamespaces));

IN commGlob MPI communicator (handle).
IN nProcsIO The number of MPI processes that shall be used for I/O.
IN IOMode The mode for the I/O. Valid I/O modes are PIO NONE, PIO MPI,

PIO WRITER, PIO ASYNCH and PIO FPGUARD.
IN nNamespaces The number of used namespaces on the model side.
IN hasLocalFile A logical array with size nNamespaces indicating whether the model

processes write locally or let the I/O server write.

Result

Upon successfull completion pioInit returns a FORTRAN handle to a MPI communicator including
only the calculating model processes.

Errors

If an error occurs, pioInit cleans up, finalizes MPI and exits the whole program.

The arguments of pioInit subject to some constraints.

8

commGlob has to be a valid handle to a MPI communicator whose group includes all
processes that will work on the CDI resources.

nProcsIO == 1 per physical node, if IOMode == PIO NONE,

<= sizeGlob /2 otherwise, with sizeGlob = number of processes in
commGlob,

>= 2 per physical node, if IOMode ∈ { PIO WRITER, PIO ASYNCH,
PIO FPGUARD}.

Example

Here is an example using pioInit to start parallel I/O in PIO NONE mode.

INCLUDE ’ cd i . inc ’
INCLUDE ’ mpif . h ’

. . .
INTEGER commModel , e r r o r

. . .
CALL MPI INIT (e r r o r)

. . .
! I n i t i a l i z e asynchronous I /O with CDI
! De f i n i t i on s t a g e f o r CDI re source s
commModel = p i o I n i t (MPI COMM WORLD, 1 , PIO NONE, 1 , (/ 0 /))

. . .
CALL MODELRUN (commModel)

. . .
! End c leanup s t a g e f o r CDI re source s
! F i na l i z e asynchronous I /O with CDI
CALL p i o F i n a l i z e ()

. . .
CALL MPI FINALIZE (e r r o r)

4.2 Finalize parallel I/O: pioFinalize

The function pioFinalize finalizes the parallel I/O. It cleans up the namespaces and sends a
message to the collector processes to close down the I/O server. The buffers and windows which
where needed for MPI RMA are deallocated. At last pioFinalize frees the MPI communicators (
see figure 5.1) and destroys the control object. The call pioFinalize is collective for all model
processes having invoked pioInit. If the model employs the CDI serially, a call to pioFinalize
has no effect.

Usage

SUBROUTINE pioFinalize ();

4.3 Notify the end of the definition stage: pioEndDef

The end of the definition stage for the CDI resources in a namespace is marked with a call to
pioEndDef. pioEndDef changes the state of the active namespace to STAGE TIMELOOP. During
this stage, a new definition of a CDI object as well as deletion or changing of members of known
objects in the active namespace will lead to an error and shut the program down. There is one
exception: To write files for a defined variable list individually for disjunct time intervalls the
three calls

• SUBROUTINE streamClose (streamID 1),

9

• INTEGER FUNCTION streamOpenWrite (filename, filetype) and

• SUBROUTINE streamDefVlist (streamID 2, vlistID 1)

can be used once at the beginning of a timestep, one time for each stream. When used with
remote writing in this stage, these subprogram effect the local CDI resources but not the local
file system. The calls are encoded and buffered in the MPI window buffer to be fetched by the
collector processes. You can find a flowchart of a timestep on model and collecting I/O processes
in figure 5.3.
pioEndDef balances the load of the variable data among the data collecting I/O server and stores
a mapping in the variables CDI resource. Among the model processes pioEndDef decomposes the
variable in rank order, laid-out in linear memory as needed for the file output. An index array with
offset and chunk is also written to the variables resource. With this result and the information
about the decomposition for the model calculation it defines I/O transposition templates that
will be used while writing the data. pioEndDef copies the CDI object array to a buffer and sends
it to the collecting I/O server for them to possess the same resource handles.
pioEndDef calculates the memory requirement for the MPI windows and buffers needed for RMA
out of the dimensions stored in the CDI resources. As a last step it allocates the buffers and
creates the MPI windows. If the model uses the CDI serially, a call to pioEndDef has no effect.

Usage

SUBROUTINE pioEndDef ();

4.4 Notify the end of the timestepping stage: pioEndTimestepping

With the function pioEndTimestepping the end of the time integration is notified.
pioEndTimestepping sets the state of the active namespace to STAGE CLEANUP. In this stage it is
possible to clean up the CDI resources. There is no transfer of data or subprogram calls anymore,
an attempt will lead to an error and shuts the whole program down. If the model uses the CDI
serially, a call to pioEndTimestepping has no effect.

Usage

SUBROUTINE pioEndTimestepping ();

4.5 Move data to the collecting I/O server: pioWriteTimestep

The subroutine pioWriteTimestep exposes the MPI windows to the data collecting I/O server.
They start to move the data from the MPI window buffers of the calculating model processes to
their own memory while the model processes can go on doing their job. The buffers contain the en-
coded subprogram calls and the variable data written by calls to streamClose, streamOpenWrite,
streamDefVlist and streamWriteVar. If the model uses the CDI serially, a call to
pioWriteTimestep has no effect.

Usage

SUBROUTINE pioWriteTimestep (INTEGER tsID, INTEGER vdate, INTEGER vtime);

IN tsID Timestep identifier
IN vdate Verification date (YYYYMMDD)
IN vtime Verification time (hhmmss)

10

Example

INCLUDE ’ cd i . inc ’
INCLUDE ’ mpif . h ’

. . .
SUBROUTINE MODELRUN (commModel)

INTEGER streamID , v l i s t ID , varID , tfID , ntf , tsID , nts , vdate , vtime

! De f i n i t i on s t a g e f o r CDI re source s
streamID = streamOpenWrite (f i l ename , f i l e t y p e)

. . .
CALL s t reamDefVl i s t (streamID , v l i s t I D)

! End d e f i n i t i o n s t a g e f o r CDI resources ,
CALL pioEndDef () ;

! Timestepping s t a g e
DO t f ID = 0 , ntf−1

IF (t f I d) THEN
CALL streamClose (streamID)
streamID = streamOpenWrite (f i l ename , f i l e t y p e)
CALL s t reamDefVl i s t (streamID , v l i s t I D)

ENDIF

DO tsID = 0 , nts−1
. . .

CALL streamWriteVar (streamID , varID , varData , nmiss)

! Expose encoded and bu f f e r e d subrou t ine c a l l s and data
! to remote memory acces s by c o l l e c t i n g I /O se r v e r .
CALL pioWriteTimestep (tsID , vdate , vtime)

END DO
END DO

! End t imes t epp ing s t a g e
CALL pioEndTimestepping ()

! Cleanup s t a g e
CALL streamClose (streamID)

. . .
CALL v l i s t D e s t r o y (v l i s t I D)

END SUBROUTINE MODELRUN

4.6 Switch between namespaces: pioNamespaceSetActive

The subroutine pioNamespaceSetActive sets the active namespace to the argument INTEGER IN
nspID. The namespace objects are defined with the call to pioInit. A namespace object has the
entries

11

INTEGER nspID Namespace identifier,
INTEGER hasLocalFile indicating whether the namespace supports local writing,

∈ {TRUE, FALSE},
== TRUE by default,

INTEGER stageCode is set by calls to the subprograms pioEndDef and
pioEndTimestepping,

∈ {STAGE DEFINITION,STAGE TIMELOOP,STAGE CLEANUP},
== STAGE DEFINITION by default.

If the model uses the CDI serially, a call to pioNamespaceSetActive has no effect.

Usage

SUBROUTINE pioNamespaceSetActive (INTEGER nspID)

IN nspID Namespace identifier

4.7 Offset of the local I/O subvariable: pioInqVarDecoOff

Obsolete.

Usage

INTEGER FUNCTION pioInqVarDecoOff (INTEGER vlistID, INTEGER varID)

IN vlistID Variable list identifier
IN varID Variable identifier

4.8 Chunk of the local I/O subvariable: pioInqVarDecoChunk

Obsolete.

Usage

INTEGER FUNCTION pioInqVarDecoChunk (INTEGER vlistID, INTEGER varID)

IN vlistID Variable list identifier
IN varID Variable identifier

12

5 Internal concepts

5.1 MPI communicators

commPIO

PE0 ...

commModel

... PEn......PEm

commsNode[0]

commsIO[0]

commGlob

commsColl[0]

Figure 5.1: Participation of MPI processes in communication “universes”.

5.2 Timestepping

suspendNEWFILE (varIOID)

if (postSet (varIOID)

forall IOID

if (postSet (varIOID)

if (func == streamWriteVar)

pioBuffer (func, argc, ...)

winBufferPush (IOID, func, argc ...)

else if (rankModel == rootModel)

MPI_Win_wait(win[varIOID])

winBufferPush (varIOID, func, argc ...)

MPI_Win_wait(win[varIOID])

Figure 5.2: Pseudo code pioBuffer used in figure timestep tsID

13

iocollPE

streamOpenNewFile (streamID, filename)

exposure
epoche
tsID for
win[varIOID]

Helvetica

Courier

CDI pseudo code

CDI on special I/O process

CDI on I/O collector process

CDI on model process

model code

source code

pseudo code

synchronization of processes

step into code (to inside)

step into code (from outside)

forall streams

if (hasNewTimefile (streamID, tsID))

pioBuffer (streamClose, 1, streamID)

pioBuffer (streamOpenWrite, 2, filename, filetype)

pioBuffer (streamDefVlist, 2, streamID, oldVlistID)

timestepInfoSend (tsID, vdate, vtime)

forall streams

forall vars

pioBuffer (streamWriteVar, 4, streamID, varID, localData, n)

PE
model

tsID+1

tsID

forall i = ModelPE

getData (tsID, vdate, vtime)

switch token

case NEWFILE

while p = bufferModelRoot

readArgs (bufferModelRoot)

timestepInfoRecv (tsID, vdate, vtime)

case WRITEDATA

suspendNEWFILE ()

transposeVar (streamID, varID)

getVarData ()

getCDIInfo (&streamID, &varID, &nmiss, p)

streamOpenNewFile (streamID, filename)

streamOpenWrite(filename,filetype)

streamDefVlist(streamID,oldVlistID)

 streamWriteVar(streamID,varID,localData,n)

 MPI_Win_post(groupsIO[varIOID],win[varIOID])

pioWriteTimestep(tsID,vdate,vtime)

streamClose(streamID)

 MPI_Win_start (groupModel, assert, win)

MPI_Get(buffer[i],start[i],getAmount(i,tsID),i,win)

MPI_Win_complete (win)

streamClose(streamID)

streamOpenWrite(filename,filetype)

streamDefVlist(streamID,oldVlistID)

streamWriteVar(streamID,varID,data,nmiss)

recvMessage (WRITE_TS)

exposure
epoche

win[IOID]
tsID−1 for

Figure 5.3: Timestep tsID on model and I/O collector processes.14

Index

E
encodeNBuffer . 5

L
legend . 5

N
namespace . 4

P
PIO ASYNCH . 7
pioEndDef . 9
pioEndTimestepping 10
pioFinalize . 9
PIO FPGUARD . 7
pioInit . 8
pioInqVarDecoChunk 12
pioInqVarDecoOff . 12
PIO MPI . 6
pioNamespaceSetActive 11
PIO NONE . 5
PIO WRITER . 6

S
STAGE CLEANUP . 4
STAGE DEFINITION . 3
STAGE TIMELOOP . 3

T
timestep . 14

15

	Introduction
	I/O stages in the program flow
	Define CDI resources: STAGE_DEFINITION
	Writing in parallel: STAGE_TIMELOOP
	Cleanup CDI resources: STAGE_CLEANUP
	The namespace object

	Modes of low level writing
	PIO_NONE: 1 process collects and writes using POSIX IO
	PIO_MPI: n processes collect and write using MPI IO
	PIO_WRITER: n - 1 processes collect and 1 writes using POSIX IO
	PIO_ASYNCH: n - 1 processes collect and 1 writes using POSIX AIO
	PIO_FPGUARD: n - 1 processes collect and write using POSIX IO

	CDI-pio modules
	Initialize parallel I/O: pioInit
	Finalize parallel I/O: pioFinalize
	Notify the end of the definition stage: pioEndDef
	Notify the end of the timestepping stage: pioEndTimestepping
	Move data to the collecting I/O server: pioWriteTimestep
	Switch between namespaces: pioNamespaceSetActive
	Offset of the local I/O subvariable: pioInqVarDecoOff
	Chunk of the local I/O subvariable: pioInqVarDecoChunk

	Internal concepts
	MPI communicators
	Timestepping

